Local Convergence of Filter Methods for Equality Constrained Nonlinear Programming
نویسندگان
چکیده
In [10] we discuss general conditions to ensure global convergence of inexact restoration filter algorithms for nonlinear programming. In this paper we show how to avoid the Maratos effect by means of a second order correction. The algorithms are based on feasibility and optimality phases, which can be either independent or not. The optimality phase differs from the original one only when a full Newton step for the tangential minimization of the Lagrangian is efficient but not acceptable by the filter method. In this case a second order corrector step tries to produce an acceptable point keeping the efficiency of the rejected step. The resulting point is tested by trust region criteria. Under usual hypotheses, the algorithm inherits the quadratic convergence properties of the feasibility and optimality phases. The paper includes a comparison between classical SQP and Inexact Restoration iterations, showing that both methods share the same asymptotic convergence properties.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملLocal Convergence Properties of
We consider the local convergence properties of the class of augmented Lagrangian methods for solving nonlinear programming problems whose global convergence properties are analyzed by Conn et al. (1993a). In these methods, linear constraints are treated separately from more general constraints. These latter constraints are combined with the objective function in an augmented Lagrangian while t...
متن کاملCombining filter and non-monotone trust region algorithm for nonlinear systems of equalities and inequalities
In this paper, we combine filter and non-monotone trust region algorithm for nonlinear systems of equalities and inequalities. The systems of equalities and inequalities are transformed into a continuous equality constrained optimization solved by the new algorithm. Filter method guarantees global convergence of the algorithm under appropriate assumptions. The second order correction step is us...
متن کاملAugmented Lagrangian Filter Method∗
We introduce a filter mechanism to force convergence for augmented Lagrangian methods for nonlinear programming. In contrast to traditional augmented Lagrangian methods, our approach does not require the use of forcing sequences that drive the first-order error to zero. Instead, we employ a filter to drive the optimality measures to zero. Our algorithm is flexible in the sense that it allows fo...
متن کاملNon-monotone trust region methods for nonlinear equality constrained optimization without a penalty function
We propose and analyze a class of penalty-function-free nonmonotone trust-region methods for nonlinear equality constrained optimization problems. The algorithmic framework yields global convergence without using a merit function and allows nonmonotonicity independently for both, the constraint violation and the value of the Lagrangian function. Similar to the Byrd–Omojokun class of algorithms,...
متن کامل